AQA GCSE (9-1) PHYSICS Equation sheet

In an exam you will be provided with a Physics Equation Sheet that contains the following equations. You should be able to select and apply the correct equation to answer the question.

1	pressure due to a column of liquid = height of column× density of liquid × gravitational field strength (g)	$p = h \rho g$
2	$(final velocity)^2 - (initial velocity)^2 = 2 \times acceleration \times distance$	$v^2 - u^2 = 2 a s$
3 D	force change in momentum time taken	$F = \frac{m\Delta v}{\Delta t}$
4	elastic potential energy = $0.5 \times \text{spring constant} \times (\text{extension})^2$	$\boldsymbol{E}_{\boldsymbol{e}} = \frac{1}{2} \boldsymbol{k} \boldsymbol{e}^2$
5	change in thermal energy = mass × specific heat capacity × temperature change	$\Delta E = m c \Delta \theta$
6	period = $\frac{1}{\text{frequency}}$	
7	magnification = $\frac{\text{image height}}{\text{object height}}$	
8 D	force on a conductor (at right angles to a magnetic field) carrying a current = magnetic flux density × current × length	F = B I l
9	thermal energy for a change of state = mass × specific latent heat	E = m L
10	$\frac{\text{potential difference across primary coil}}{\text{potential difference across secondary coil}} = \frac{\text{number of turns in primary coil}}{\text{number of turns in secondary coil}}$	$\frac{V_p}{V_s} = \frac{n_p}{n_s}$
11 ①	potential different across primary coil × current in primary coil = potential difference across secondary coil × current in secondary coil	$V_s I_s = V_p I_p$
12	For gases: pressure × volume = constant	p V =constant

AQA GCSE (9-1) PHYSICS Equation sheet

1	weight = mass × gravitational field strength (g)	W = m g
2	work done = force × distance (along the line of action of the force)	W = F s
3	force applied to a spring = spring constant × extension	F = k e
4	moment of a force = force × distance (normal to direction of force)	M = F d
5	pressure = $\frac{\text{force normal to a surface}}{\text{area of that surface}}$	$\boldsymbol{p} = \frac{F}{A}$
6	distance travelled = speed × time	s = v t
7	acceleration = $\frac{\text{change in velocity}}{\text{time taken}}$	$a = \frac{\Delta v}{t}$
8	resultant force = mass × acceleration	F = m a
9 ()	momentum = mass × velocity	p = m v
10	kinetic energy = 0.5 × mass × (speed) ²	$E_k=\frac{1}{2}m v^2$
11	gravitational potential energy = mass × gravitational field strength (g) × height	$E_p = m g h$
12	power = $\frac{\text{energy transferred}}{\text{time}}$	$\boldsymbol{P} = \frac{E}{t}$
13	power = $\frac{\text{work done}}{\text{time}}$	$\boldsymbol{P} = \frac{W}{t}$
14	efficiency = useful output energy transfer total input energy transfer	
15	efficiency = useful power output total power input	
16	wave speed = frequency × wavelength	$v = f \lambda$
17	charge flow = current × time	Q = I t
18	potential difference = current × resistance	V = I R
19	power = potential difference × current	P = VI
20	power = (current) ² × resistance	$P = I^2 R$

You need to be able to recall these 23 equations if asked in your exam.

21	energy transferred = power × time	E = P t
22	energy transferred = charge flow × potential difference	E = Q V
23	density = $\frac{\text{mass}}{\text{volume}}$	$P = \frac{m}{V}$